Spectroscopic Properties of Nd³⁺ Ion in TbAIO₃ Single Crystals

V. A. ANTONOV, P. A. ARSENEV AND D. S. PETROVA

Moscow Energetic Institute

Received July 19, 1977; in revised form July 26, 1978

Growth of terbium aluminate single crystals and investigation of Nd^{3+} ion spectroscopic properties in them are described. Detailed investigation of absorption and luminescence spectra of Nd^{3+} ions in TbAlO₃ at T = 77 and 300°K permits obtainment of a complete diagram of the Stark components energy. The spectral-structural regularities of Nd^{3+} ions in orthoaluminate monocrystals are analyzed. The dependence on interionic distance of the position of the center of gravity of the ground terms of Nd^{3+} ion along with the nephelauxetic shift of ${}^{4}F_{3/2}$ term of Nd^{3+} ion is investigated.

1. Introduction

Single crystals of rare-earth (RE) aluminates have recently become prospective materials for solid-state lasers (1-4). In this connection mixed systems are of particular interest, e.g. based on crystals with $A'_{x}A''_{1-x}B'_{y}B''_{1-y}O_{3}$ composition where A = RE ions, B = AI, Sc, Ga, etc. (8). However, in order to understand the processes formation of activator of centres one has to know how the spectroscopic properties of these centers vary depending on interatomic distances in these centers, while the symmetry remains practically unaltered. From this point of view, most fruitful and promising is the investigation of the behavior of the same activator ion in single crystals of compounds that form a "homologous" row. A number of convincing and important results obtained in this way during investigations of garnet structures (5-7), conditioned the tasks of the present paper, in which we intend to obtain information about spectral-structural properties of Nd³⁺ activator ion in single crystals with pervoskite structure.

It has been mentioned (1-4) that up to date the investigations of Nd³⁺ ions have been performed for yttrium, gadolinium, lutetium and lanthanum aluminates (1-4).

The purpose of the present paper is to describe the synthesis of new single crystals of terbium aluminates doped with neodymium ions, followed by a spectroscopic investigation of its properties and by an investigation of main laws governing the neodymium ion's behavior in single crystals of rare-earth aluminates.

During the working process single crystals of DyAlO₃ doped with neodimium ions were for the first time synthetized and optically examined. Some of these spectroscopic studies, required for analysis of spectralstructural properties of Nd³⁺ activator ion in single crystals of rare-earth aluminates, are described in this paper.

2. Experimental Procedure

The aluminate of the trivalent ion of Tb has the orthorhombic distortion of the ideal pervoskite structure found in GdFeO₃. This crystal belongs to space group D_{2h}^{16} -Pb_{mn}

with fair distorted pervoskite units in the crystallographic cell (14–15). The results of X-ray examination showed that the values of lattice constants for single crystals of TbAlO₃ were: a = 5.2317 Å, b = 5.3097 Å, c = 7.4196 Å (15).

The single crystals of terbium aluminate were grown by optical zone melting (OZM) in air (9, 10). The original materials were taken in the form Tb₂O₃, Al₂O₃ and Nd₂O₃ with 99 999 wt% purity in an amount corresponding to composition Tb_{0,97} Nd_{0,03} AlO₃. After a thorough mixing, the charge was subjected to pressing. The seeds were preliminary roasted in air at 1250°C for 15– 20 hr. The growth of TbAlO₃ single crystals was carried out at the rate of 4 mm/hr. After completion of the growth, the crystals appeared to contain a large number of Fcenters, considerably in excess over that in YAlO₃ and GdAlO₃ crystals (11).

The investigation of the spectroscopic properties of Nd³⁺ ion in TbAlO₃ single

crystals was performed on a spectrometer DFS-12 and SF-8 at 300 and 77°K in the waverange 300 to 2500 nm. The specimens investigated were plates with $3 \times 10 \times 2$ mm size.

3. Results

The overall absorption spectrum observed at 300 K is shown on Fig. 1. At the considered concentrations the absorption bands of Nd³⁺ ions are rather intensive. A superposition of a group of lines is observed in the range of 450 to 500 nm, associated with the transitions ${}^{4}I_{9/2} \rightarrow {}^{4}G_{9/2}$ and ${}^{4}I_{9/2} \rightarrow {}^{2}D_{3/2}$ for Nd³⁺ ion and ${}^{7}F_{6} \rightarrow {}^{5}D_{4}$ for Tb³⁺ ion. This gives an opportunity to consider the interaction of the ionic pair Nd³⁺ \leftrightarrow Tb³⁺ from the viewpoint of excitation transmission.

The absorption spectra of Nd³⁺ ion corresponding to transitions ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$ and ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ at T = 77 K are shown in Fig. 2.

FIG. 1. Overall absorption of Nd^{3+} ion in TbAlO₃ single-crystals at $T = 300^{\circ}K$.

FIG. 2. Absorption spectra of Nd³⁺ ions in TbAlO₃ single-crystals corresponding to transitions ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$ and ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ at T = 77 and 300 K.

The analysis of these transitions permitted a precise determination of the Stark components of Nd³⁺ ion's ground state ${}^{4}I_{9/2}$. The splitting of the three lowest energy levels is equal to 0.110, 205 cm⁻¹ at 77 K and 0.107, 202 cm⁻¹ at 300 K. The splitting of term ${}^{4}F_{3/2}$ was determined as well at T =77 K and 300 K, and it turned out to be equal to 122 cm⁻¹ and 119 cm⁻¹, respectively.

We investigated also the luminescence of Nd^{3+} ions in TbAlO₃, corresponding to transitions from level ${}^{4}F_{3/2}$ to levels ${}^{4}I_{9/2}$ and $^{4}I_{11/2}$ at 77 K (Fig. 3). The transition ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ was the most intensive one (1060 nm). The luminescent analysis confirms the results on splitting obtained from absorption spectra for state ${}^{4}F_{3/2}$ (122 cm^{-1}) . A detailed analysis of the absorption and luminescence spectra permitted the determination of positions of energy levels for the terms of Nd³⁺ ions in $TbAlO_3$ (see Table 1).

4. Discussion

Experiments (16, 17) present detailed theoretical analysis of crystalline field (CF) in

crystals YAlO₃ doped with thulium and erbium ions. This paper also gives analysis of main properties of CF in crystals TbAlO₃, doped with neodimium ions, and of certain spectral-structural regularity of Nd³⁺ ion's behavior in rare-earth aluminates row.

Comparing the splitting of the term ${}^{4}F_{3/2}$ for Nd³⁺ ion (ΔE) at 77 K in crystal of our own growth. TbAlO₃: Nd³⁺ ($\Delta E =$ 122 cm^{-1}), $\tilde{\text{EuAlO}_3}$: Nd³⁺ ($\Delta E = 110 \text{ cm}^{-1}$), $DyAlO_3: Nd^{3+}$ ($\Delta E = 124 \text{ cm}^{-1}$)—with that in crystals $YAlO_3: Nd^{3+}$ ($E = 129 cm^{-1}$) (12), $GdAlO_3: Nd^{3+}$ ($\Delta E = 116 \text{ cm}^{-1}$) (2), and LuAlO₃: $Nd^{3+} (\Delta E = 131 \text{ cm}^{-1}) (3)$, one can conclude that the local symmetry of surroundings changes insignificantly on replacing the rare-earth ion in the matrix by a Nd^{3+} ion. A change in the splitting ($\Delta E = 23 \, \mathrm{cm}^{-1}$) from that for the above mentioned crystals is observed only for $LaAlO_3$: Nd³⁺ single crystals (4). The dependence $E_{F_{3/2}} =$ $J(R_{\rm RE}/R_{\rm Nd})$ is shown in Fig. 4a where $R_{\rm RE}$ and $R_{\rm Nd}$ are the effective ionic radii of the RE matrix ion and neodymium ion respectively: the values of effective ionic radii are obtained from (12) at eight-fold coordination.

It is well known that the splitting magnitude (ΔE) of the state ${}^{4}F_{3/2}$ can serve as measure of the deviation of the CF symmetry from cubic. At $R_{\rm RE} < R_{\rm Nd}$ (see Fig. 1) the structure of rare-earth aluminates, the study of which is described in this paper, is orthorhombic (14). In this case, upon increase in $R_{\rm RE}$ we observe monotonic decrease in noncubic component of CF, reaching the least value in EuAlO₃. Values of splitting term ${}^{4}F_{3/2}$ in TbAlO₃ and DyAlO₃ are close to similar value in YAlO₃ which confirms an insignificant difference of non-cubic components of CF in these crystals. The sharp decrease in the splitting magnitude $\Delta E_{F_{3/2}}$ for $R_{\rm RE} > R_{\rm Nd}$ corresponds to the structural transition from orthorhombic to rhombohedral (14). The splitting of the ${}^{4}F_{3/2}$ level of Nd³⁺ must decrease drastically in LaAlO₃ (point symmetry: D_3) which is nearly cubic since this splitting depends only

FIG. 3. Luminescence spectra of Nd³⁺ ions in TbAlO₃ corresponding to transitions ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ and ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ at T = 77 K.

TABLE I

The Values of Stark Components Energy for Nd^{3+} Ion in $TbAlO_3$ at $77^\circ K$

Terms	Energy levels of Nd^{3+} ion in $TbAlO_3$ at 77 K (cm ⁻¹)			
⁴ <i>I</i> _{9/2}	0, 110, 205, 510, 669	669		
$4I_{11/2}$	2027, 2106, 2164, 2269, 2320, 2371	344		
$4I_{15/2}$	5731, 5790, 6127 ^a , 6152, 6254, 6309 ^a , 6402, 6766	1035 ^a		
${}^{4}F_{3/2}$	11565, 11443	122		
${}^{4}F_{5/2}, {}^{2}H_{9/2}$	12310, 12425, 12459, 12527, 12572, 12601, 12723, 12894	584		
${}^{4}F_{7/2}, {}^{4}S_{3/2}$	13337, 13459, 13572, 13594, 13609, 13661	324		
${}^{4}F_{9/2}$	14945, 14817, 14771, 14749, 14704	241		
$^{2}H_{11/2}$	15898, 15924, 15949, 16000, 16026, 16129	231		
${}^{2}G_{7/2}, {}^{4}G_{5/2}$	16878, 16998, 17036, 17129, 17316, 17385, 17467	589		
${}^{4}G_{7/2}, {}^{2}G_{9/2}$	18875, 18929, 18997, 19099, 19238, 19327, 19361, 19440, 19550	675		
${}^{4}G_{9/2}, {}^{2}D_{3/2}$ ${}^{2}P_{1/2}$	20747, 20877, 20921, 20986, 21053, 21106 23175	239		

^a Energy levels and ΔE -values require more accurate definition.

FIG. 4. Variation of Nd³⁺ term's position at 77 K in the group of orthoaluminates: (a) dependence of the splitting of the term ${}^{4}F_{3/2}$ for Nd³⁺ ion (ΔE) on the effective ionic radius of the RE ion of the matrix; (b) dependence of nepheloxetic shift (ΔE_n) of the term ${}^{4}F_{3/2}$ for Nd³⁺ on interionic distance R_i .

on the B_0^2 parameter, which falls to zero in a cubic symmetry. It explains the sharp decrease in the value $\Delta E_{F_{3/2}}$ in LaAlO₃ in Fig. 1.

Distance between centers of gravity of terms ${}^{4}F_{3/2}$ and ${}^{4}I_{9/2}$ of Nd³⁺ ion in

TbAlO₃, equal to 11205.2 cm⁻¹, is bigger than corresponding distances in YAlO₃ (11191 cm⁻¹) and LuAlO₃ (11157 cm⁻¹). Thus, nephelauxetic shift ($\Delta E_{\rm H}$) of the terms ${}^{4}F_{3/2}$ (in relation to its place in aquo-ion— 11580 cm⁻¹) is lesser in case of TbAlO₃ (-374.8 cm⁻¹), which means that connection of activator-nearby anions in this matrix is less covalent (13). For crystals EuAlO₃+ Nd³⁺ value $\Delta E_{\rm H}$ of the terms ${}^{4}F_{3/2}$ in the observed row of orthorhombic aluminates is the minimum (see Table No. 2).

Insignificant value $\Delta E_{\rm H}$ of the terms ${}^{4}F_{3/2}$ of Nd³⁺ ion in LaAlO₃ shows that for rhombohedral aluminates the activatornearby anions connection is considerably less covalent as compared to aluminates of orthorhombic structure. Change in $\Delta E_{\rm H}$ of the term ${}^{4}F_{3/2}$ of Nd³⁺ ion in row of rare-earth aluminates depending upon the distance between ions-Ri (anion-cation distance) is shown in Fig. 4b.

Splitting of terms of ${}^{4}I_{9/2}$ and ${}^{4}I_{11/2}$, contrary to splitting of term ${}^{4}F_{3/2}$, besides B_{0}^{2} , depends also on parameters B_{0}^{4} ; B_{0}^{6} ; B_{2}^{4} ; B_{2}^{2} ; B_{4}^{4} ; B_{4}^{6} ; B_{6}^{6} , which maintain values different from zero at symmetry O_{h} . In orthorhombic aluminates under observation the values of energies of gravity centers of Nd³⁺ ion's levels in relation to lower Stark's level of each term ${}^{4}I_{i}$ (j = 9/2:11/2) with increase in R_{i} are monotonically decreased. For rhombohedral LaAlO₃ a sharp decrease in values of center gravity energies of terms ${}^{4}I_{i}$ (see Fig. 5) has been observed.

TABLE II

Position of Energies of Gravity Centers of Terms (ΔE g.c.) and Nepheloxetic Shift (ΔE_n) of Term ${}^4F_{3/2}$ of Nd³⁺ Ion at 77 K in Row of Orthoaluminates

Term	Matrix	LuAlO ₃	YAlO ₃	TbAlO ₃	GdAlO ₃	EuAlO ₃	LaAlO ₃
	⁴ I _{9/2}	301.0	300.2	298.8	294.5	294.0	216.6
ΔE g.c. (cm ⁻¹)	${}^{4}I_{11/2}$	185.5	184.2	182.5	180.7	_	138.2 ^a
	${}^{4}F_{3/2}$	66.5	64.5	61.0	58.0	55.0	11.5
$\Delta E_n \ (\mathrm{cm}^{-1})$		-423.0	-394.7	-374.8	-367.5	-358.0	-202.1

Energy of centers of gravity of terms ${}^{4}I_{j}$ is expressed as under:

$$\Delta E_{\mathbf{g.c.}} = A_0^{\prime} A_1 \cdot B_0 \cdot C_0,$$

where $B_0: C_0 = \text{const}$,

 $A'_{0_{A_1}} = \text{central symmetric}$ component of $CF(A'_{0_{A_1}} \sim 1/R_i)$

The angle of inclination of the straight lines in Fig. 5, contrary to the theoretically calculated value, which is one unit, equals -1.2. It shows that actual value of central symmetric component of CF in orthorhombic aluminates differs from theoretical value.

5. Summary

Thus, the results of the performed investigation are as follows:

1. New single-crystals of $TbAlO_3$, $EuAlO_3$, $DyAlO_3$, doped with neodymium ions, have been synthesized.

2. A spectroscopic investigation of these crystals has been carried out; diagrams of Nd^{3+} energy levels in TbAlO₃ single-crystals have been constructed.

3. The variation of Nd^{3+} ion's main spectroscopic properties along the row of rareearth orthoaluminates is examined.

References

- 1. M. Y. WEBER AND T. E. VARITIMOS, J. Appl. Phys. 42, 4996, (1971).
- P. A. ARSENEV AND K. E. BIENERT, Zh, Prikl. Spektrosk. 17, 1084–1087, (1972) (in Russian).
- A. O. IVANOV, L. G. MOROSOVA, I. V. MOGALOV, AND P. P. FEOFILOV, *Opt. Speckrosk* 38, 2, 405, (1975) (in Russian).
- KH. S. BAGDASAROV, G. A. BOGOMOLOVA, M. M. GRITSENKO, A. A. KAMINAKIJ, AND A. M. KEVORKOV, *Kristallografiya* 17, 415, (1972) (in Russian).
- YU. K. VORONKO, E. N. MURAVIEV, AND A. A. SOBOL, Phys. Status. Solidi A 19, 193, (1973).
- 6. D. Y. NEWMAN AND G. F. STEDMAN, J. Chem. Phys. 51, 7, 3013, (1969).
- 7. M. T. HUTCHINGS AND W. P. WOLF, J. Chem. Phys. 41, 3, 617, (1964).
- 8. P. A. ARSENEV, K. E. BIENERT, AND A. V. POTEMKIN, *Phys. Status. Solidi A* 28, 81, (1975).
- P. A. ARSENEV, M. N. BARANOV, K. E. BIENERT, AND E. F. KUSTOV, Krust Technik, 8, 2, 1113-1118, (1973).
- P. A. ARSENEV, M. N. BARANOV, AND E. F. KUSTOV, Exp. Technik Physik, 28, 4, 289, (1973).
- V. A. ANTONOV, P. A. ARSENEV, I. G. LINDA, AND V. L. FARSHTENDIKER, Phys. Status, Solidi A 15, 63, (1973).

FIG. 5. Dependence of positions of center of gravity for the terms ${}^{4}I_{9/2}$ and ${}^{4}I_{11/2}$ for Nd³⁺ at 77 K in the group of orthoaluminate single-crystals: on interionic distance R_{i} .

- 12. A. A. KAMINSKIJ, "Laser Crystals" (in Russian), p. 29, Moscow, Nauka (1975).
- 13. C. K. JORGENSEN, "Orbitals, Atoms and Molecules," Academic Press, N.Y. (1962).
- 14. S. GELLER AND V. B. BALA, Acta Crystallogr. 9, 1019, (1956).
- 15. P. D. DERNIER AND R. G. MAINES, Mat. Res. Bull. 6, 433-440, (1971).
- 16. J. M. O'HARE AND V. L. DONLAN, Phys. Rev. B. 14, 9, 3732, (1976).
- J. M. O'HARE AND V. L. DONLAN, *Phys. Rev. B*. 15, 1, 10, (1977).